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Atomic fine structure in a space of constant curvature 

N Bessis, G Bessis and R Shamseddinet 
Laboratoire de Spectroscopie thkorique, Universitk Claude Bernard, Lyon I, 69622 
Villeurbanne, France 

Received 3 August 1981, in final form 11 May 1982 

Abstract. As a contribution to a tentative formulation of atomic physics in a curved space, 
the determination of atomic fine structure energies in a space of constant curvature is 
investigated. Starting from the Dirac equation in a curved space-time, the analogue of 
the Pauli equation in a general coordinate system is derived. When particularising these 
results to the model of a spherical three-space with a Coulombic field, one obtains the 
‘curved’ form of the one-electron fine structure Hamiltonian, i.e. the curved form of the 
Land6 spin-orbit interaction and of the relativistic correction of the kinetic energy as well 
as some additional terms which vanish at the traditional flat limit. The theoretical curvature 
induced shifts and splittings of the fine structure energy levels are put in evidence and 
examined for the particular case of the hydrogenic n = 2 levels. 

1. Introduction 

In a previous paper (Bessis and Bessis 1979, to be referred to as I), we have suggested 
the interest of calculating electronic wavefunctions in a space of constant curvature. 
These calculations have been performed within the framework of a simplistic ‘curved 
orbital’ model. In that model, the usual flat Euclidean space is substituted by a 
spherical three-space which can be viewed as the three-dimensional hypersphere of 
radius R embedded in a Euclidean four-space. After introducing hyperspherical 
coordinates h, e ,+)  in lieu of the polar coordinates ( r ,  0, +), and the ‘curved’ form 
( l / R )  cot ,y of the Coulomb potential, exact solutions of the one-electron Schrodinger 
equation have been obtained. Within the usual independent particle framework these 
one-electron wavefunctions can be considered as ‘curved orbitals’ and can be used as 
a basis set in order to build up many-electron ‘curved’ wavefunctions. A multipolar 
expansion of the bielectronic repulsion potential has been obtained, allowing the 
computation of the two-electron repulsion integrals as well as further consideration 
of higher multipolar electrostatic interactions. As expected, one finds again the usual 
flat results at the asymptotic flat limit, i.e. when R + 00, ,y + 0 such that X R  = r remains 
finite. Although this over-simple model could not be considered as quite satisfactory 
by the general relativity theorist, nevertheless it seems to us that it could be useful 
to put in evidence some results due to the closeness of the universe, which cannot be 
formulated from the asymptotic flat limit. Moreover, from a practical computational 
point of view, it could be advantageous to transform the radial variable r, with infinite 
range [0, CO[ of the flat space into an angular variable x with finite range ( 0 , ~ ) .  This 
last point remains to be thoroughly investigated. 
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In this paper, this ‘curved orbitals’ model is extended to the consideration of the 
one-electron spin-dependent interactions, i.e. to the determination of the ‘curved’ 
form of the fine structure Hamiltonian (LandC spin-orbit interaction). As is usually 
done, in order to obtain these terms, one could start from the Dirac equation and 
then go to the non-relativistic limit via the Pauli equation. Since our working space 
is now a curved space-time instead of the usual flat space-time, one has to consider 
a generalised form of the Dirac first-order equation for the electron which is valid in 
a Riemannian space of four dimensions. 

The Dirac equation in a curved space was formulated a long time ago (Tetrode 
1928, Fock 1929, Fock and Ivanenko 1929) and has been reinvestigated or reviewed 
by several authors (see, for instance, Schrodinger 1932, Taub 1937, Pagels 1965, 
Chapman and Leiter 1976). More recent works also question the possibilities of 
observing gravitational induced phenomena and, in particular, study the energy levels 
of a one-electron atom in a curved space-time (Tourrenc and Grossiord 1976, 
Audretsch and Schafer 1978, Parker 1980). Let us mention that our approach is 
different from these last works since one of our motivating purposes is to render 
tractable atomic fine structure calculations in a spherical three-space on the basis of 
the ‘hydrogenic curved orbitals’. For their part, Tourrenc and Parker have used ‘flat’ 
space-time solutions of the Schrodinger and Dirac equations as a basis for calculating 
curvature contributions to the energy levels by first-order perturbation theory. There- 
fore one cannot extract from their results the expression of the spherical three-space 
fine structure Hamiltonian we need. It should be noted that, when expanding our 
expressions of the fine structure energies in powers of R-2 ,  one should obtain a 
first-order (in R - 2 )  expression of the curvature effects which can be compared with 
the non-relativistic one given by Tourrenc and Grossiord (1976) and Parker (1980). 
In other words, in the above quoted works, the ‘master’ equation is the Dirac equation 
in an arbitrary curved space-time in order to put in evidence the curvature corrections 
to the ‘flat’ energies, while our point of view is more pragmatic: we consider the Pauli 
equation in a curved space (and in particular in a spherical three-space), as our ‘master’ 
equation, and consequently our results should involve some more curvature effects, 
even though they are formulated within a non-relativistic scheme. In 0 2, the Dirac 
equation in a curved space-time is used as a starting point in order to derive the Pauli 
equation in a spherical three-space; special attention is paid to the choice of the Dirac 
matrices leading to the traditional (e, 4)  dependence of the relativistic atomic 
wavefunctions. A covariant formulation of the Pauli equation is given ( Q  3). When 
particularising these results to the spherical three-space containing a Coulombic field, 
one obtains the spin-dependent one-electron terms of the Hamiltonian, i.e. the curved 
form of the LandC interaction as well as some additional terms arising from spin and 
curvature interaction ( 0  4). 

2. Dirac equation in spherical three-space 

The generally covariant form of the Dirac equation in a curved? space-time of metric 
g,, (x ) is 

(icztjfi(x)G, -mcZ)$(x )  = O  (1) 

t The - symbol denotes matrices of the curved space-time. 
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where 4 is a four-component spinor, p = 0 , 1 , 2 , 3  and the Einstein summation 
convention is used. x = (x , x , x , x 3 ) .  

The 7, ( x )  are coordinate-dependent matrices which obey the anticommutation 
relations 

(2) 

0 1 2  

7, (X )+” (X)  + q ” ( x ) q ’ ”  ( x )  = 2 g W ” ( x ) .  

The spin covariant derivatives of a spinor and of a matrix are, respectively, 

$,$ = a+//ax” +i[(elhc)A, +I‘,l111, V,B, . . . = B,~...;, + i[r,, B, . . .I, (3) 
where ; CL stands for the covariant derivative, the r, are the Fock-Ivanenko matrices 
and the A, are the electromagnetic four-vector components. 

The covariant derivative of a vector # ’ is defined in terms of the Christoffel symbols 

(4) 

where, following from the vanishing condition g,,;, = 0, the Christoffel symbols are 

r:, = rLa. ( 5 )  

9 , ~ ~  = L, +i[r,, 0 (6 )  

4 ”;, = a# ” /ax  c1 + r :,# #,;, = a(bv/axp - r:,(ba, 

r u  = L  
a, 2 g ” p ( a g , p l a ~ F  +ag,,lax“ -ag,, laxp),  

The Fock-Ivanenko matrices r, are obtained from the vanishing condition 

and are given by the expression 
r = - + - y -  , 4 Y Yv;,. (7) 

In view of the further derivation of the Pauli equation in a spherical three-space 
which leads to the classical Pauli representation flat limit, it is worthwhile to review 
briefly a convenient representation of the Dirac equation in a spherical three-space. 

When introducing hyperspherical coordinates, the space-time line element (Ein- 
stein metric) is 

(8) 
where 8 and # lie within their traditional flat bounds O s 4  G ~ T ,  O s @  GT and 
0 G X  s T.  Setting R -* 00, ,y -* 0 such that Rx = r remains finite, the spatial part of 
the line element (8) reduces to that of Euclidean space in which r, 8, (b are the usual 
polar coordinates. 

It is easily found that a convenient choice of the Dirac matrices 7 ” ( x )  which obey 
the anticommutation relations (2) and lead to the usual polar dependence (e, #) of 
the Dirac wavefunction is 

ds2 = c 2  dt2 - R z  d,y2 - R2 sin2 ,y (de2 + sin2 8 d#2) 

7 0  = 

7’ = ( l /R) (y l  sin e cos 4 + y2 sin e sin 4 + y 3  cos e), 
y 2 = ( ~  sinX)-l(y1cose cos#+y2cose  sin#-y’sine), 

q3 = ( R  sin ,y sin e)-’(-Y1 sin 4 + y2 cos 41, 

(9) 

where the yLI are the constant Dirac matrices 

k = 1 ,2 ,3 ,  
I O  

(10) 
0 1  u2=(P ,3, ”=( 1 0  ).  

0 -1 
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These constant Dirac matrices y w  obey the anticommutation relations (2) where g@" 
is the Lorentz diagonal constant metric (1, -1, -1, -1). 

From the above definitions (see equations (8), (9)) the non-vanishing Christoffel 
symbols and the Fock-Ivanenko matrices in a curved space-time with line element 
(8) are found to be 

r22 = -sin x cos x, 
r:, = ri1 = r:, = r:, =cot x, 

1 2 r:, = -sin x cos x sin e, r:, = -sin e cos e, 

r:, = r:, = cot e, (11) 
i 1 -cosx  ro=rl=o, r k = - (  2 sinx )s,.i.l for k = 2 , 3 .  

One obtains the following expression of the Dirac equation in a spherical three-space 
( x @  = c t ,  x, e, 4 ) :  

a e  1-cosx  mc [ sw (i p - A'> - i ( , ) 7' - 71 $ = 0. sin x (12) 

Let us consider the stationary states. Setting 

* = exp(-iETt/A), E T  = mC2 + E, (13) 

and multiplying (12) by - yo ,  one gets the Dirac equation for stationary states with a 
scalar potential A .  = V 

or alternatively 

where 

a a )I [ ( ae s ine a4 
i a  

P x  = -% ax R = p  1-ax  ae-+-- = P ( l + u . l ) ,  - sin x, 

U = (a', a2, a,) and I is the usual orbital angular momentum, 

ax = ( a ,  cos 4 +a2 sin 4 )  sin 8 +a3 cos 8, 

= (a1 cos4  +a2 sin 4 )  cos e - a 3  sin e, 

a . + = - a 1 s i n 4 + a ~ c o s ~ ,  

At the asymptotic flat limit, it can be easily verified that p x  + p r  = -(i/r)(a/ar)r; and 
one finds again the usual flat space expression of the Dirac equation in polar coordinates 
(see, for instance, Messiah 1964) 

p = yo ,  ak = y o y k  are the standard Dirac matrices. 

The resolution of the Dirac equation (14) as well as a possible relativistic formula- 
tion of the fine and hyperfine interactions in a spherical three-space will be considered 
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in a further paper. In the present paper we shall limit ourselves to fine structure 
calculations within the non-relativistic 'curved' model which have been introduced in 
paper I and use the curved form of the Pauli equation. 

3. Pauli equation in a curved space 

Let us consider the Dirac equation (1) in a curved space-time with line element 
ds2 = c 2  dt2-dso . For stationary states, the Dirac equation (1) reduces to 

where k = 1,2,3.  (16) 

Since the ?"(x) matrices of the curved space-time are linearly related to the Dirac 

2 

[ ih j  k 6 k  + ( I /c ) (E~-  e v ) f 0  - m c ] ~  = o 

matrices of the flat space-time, one can write 

where the Gk(x) are 2 x 2 matrices which obey, as well as the qk(x) ,  the anticommuta- 
tion rules u u +u u - 2gk'(x), (k, I = 1,2 ,3) .  Consequently - k - l  - 1 - k -  

Setting @ = (::), one obtains a couple of equations 

(E -e V ) Q ~  + ic h ~ ' V k ~ 2  = 0,  

where 

ichG'k& +(E - e V  + 2mc2)Q2 = 0, (18a, b )  

6 ~ c ~ ~  = a ~ ~ / a x '  +i[(e/hc)Ak +r;p j = 1,2.  

From inspection of equation (18b), it is seen that Q2 can be identified with the 
traditional small component. It is related to the large component Ql by 

When going to the non-relativistic limit of the Dirac equation in a curved space- 
time, the possibility of separation between small and la1 ge components implies condi- 
tions on the order of magnitude of the curvature radius. For the case of the hydrogenic 
free atoms, this point has been analysed by Parker (1980) and we shall assume that 
these conditions are fulfilled. 

After substituting for a2 from (19) into equation (18a), one obtains the following 
'curved' Pauli equation: 

[(h2/2m)(G'e;)Q(G1V;) +E -eV]Ql = 0. (20) 
When working out the first term of the equation (201, since [eke;, Q ] = G k  aQ/axk, 
one obtains 

(21) {( h2/2m )[ Q (e k6 ;>(G16 I) + G 'G ' (aQ/ax ')e I] +E - e V}Q1 = 0. 

Using the commutation properties (Schrodinger 1932) 



3136 N Bessis, G Bessis and R Shamseddine 

where R mnkl is the Riemann curvature tensor and g = det Igkll .  

{-$g-1‘29;(Jigk161) -&SkfSmnRmnkl -$aSk’Fkl 

Finally, the Pauli equation in a curved space becomes, in atomic units, 

- ’Q[G k$(aV/ax ‘)$;I - (E  - v) -$a ’ (E - v)’p1 = o (24) 

where a =e’h/c is the fine structure constant and Fkl= aAf/axk -aAk/ax’ is the 
covariant field magnetic tensor. 

It is easily found that this last equation can be rearranged in the form 

- (E  - V) -$aZ@ - V)’ + U @1= 0 I 

This equation ( 2 5 )  can be compared with the traditional ‘flat’ Pauli equation (Slater 
1968) 

{ i ( p  - aA)2 - $ a ~  H + 3a ’Qu * [( p V )  A ( p  - aA)] 

(27) 

One easily recognises that the four first terms of (25) are the ‘curved form’ of the 
four first terms of the classical Pauli equation (27), while the remaining terms U of 
(25) are supplementary terms which vanish at the traditional flat limit. 

For the case of a spherical three-space, the line element is the spatial part of (8), 

ds i  = R 2  dx’ + R’ sin’ X(d02+sin2 8 d4’), (28) 

&= R 3  sin’x sin 8, 

+1. 4a 2 Q ( ~ v ) .  ( p  - a ~ )  - (E - V) - b a 2 ( ~  - V)~}Q., = 0. 

and consequently 

- 1  1 &’=- 1 - 3  1 
R sin x sin 6 a’9 

a =  U =- 
R sin x a’, R 

(29) 
ux = a‘ sin 8 cos 4 +aZ sin 8 sin 4 +a3 cos 8, 
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=U' cos 0 cos 4 +U' cos 8 sin 4 -u3 sin 0, 

U+ = -ulsin 4 +U' cos 4, 

3137 

i 1 -cosx .  .1 

2 s inx 
for k = 2,3. u k u  r;=o, r;=-- 

The expression of the Pauli equation in a spherical three-space follows directly from 
equations (25), (26), (28) and (29). 

4. Fine structure in a spherical three-space 

Since we are only concerned with fine structure interaction terms, we shall consider 
the Pauli equation in a spherical three-space for the particular case where Ak = 0 for 
k = 1 ,2 ,3 ,  A .  = V is the 'curved' form of the Coulomb potential, and for Q ( x )  = 
1 -&r2(E - V). When going to the non-relativistic limit of the Pauli equation (25) 
as is usually done, i.e. when introducing the spin operator s = $0, one obtains (in au) 
(see appendix 1) 

I * s -iff ' (E - v)' +iff 'AV + U - ( -$A+V+-  1 ff'z 

2 R sin3x 

where 

A =: (R' sin' x)-'[(a/8x)(sin2 x d/ax)  -1'1 is the spherical three-space Laplacian, 

V = -(Z/R) cot X ,  

(1 -cos x) 1 1-cosx 1 z a 2 ( 1 - c o s ~ )  I .  s +- ( )2+_2_t- 
4 RsinX 4R' 4 R3sin3x * 

U =  R sin' ,y 

One recognises in (30) the Schrodinger hydrogenic wave equation in a spherical 
three-space completed by the 'curved' form of the Land6 spin-orbit interaction, by 
the terms -&'(E - V)' and &'(AV), which are equivalent to the relativistic and 
Darwin corrections, and by an additional term U which vanishes at the flat limit 
(R + CO). As is usually done, the contributions to the energy arising from these terms 
are calculated by perturbation. We use as a basis the curved hydrogenic wavefunctions 
+,,lm(x, 8,4). These functions are already known (Bessis and Bessis 1979): 

(3 1) (Lnrm = (sin X)-l%nlCY)Yi" ( 0 ~ 4 )  

%,,,CY) = N,,,(sin x)" exp(-ZRX/n)Pt(-i cot x), 
where 

n is the usual radial quantum number, Y ;" are the spherica; harmonics, U = n - 1 - 1 
and A = (-n - iZR/n, -n + iZR/n). In spite of the presence of the imaginary quan- 
tities, the Jacobi polynomial P:' in (31) is a real polynomial of cot x; Nnl is a 
normalisation constant. 

As already pointed out, our procedure of calculation of the energies differs from 
that of Tourrenc and Grossiord (1976) and Parker (1980). Indeed, our perturbation 
calculation is done in the basis of already 'curved' non-relativistic wavefunctions, 
while Tourrenc and Parker have used 'flat' unperturbed wavefunctions (non-relativistic 
and relativistic). 
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When gathering the different contributions to the total energy E, one gets 

where 

Eo = -Z2/2n2 + (n - 1)/2R ’, (32) 

(33) 

El =Qa2[j( j+1)-1(1+1)-3/4](nl l (R3 sin3x)-’lnl) 

-$a2(nlI[Eo+ (Z/R)  cot ~ ] ~ + a ( Z / R ) A ( c o t  x)lnl), 

+&Zcx2(n11(l -cosx) /R3 sin3 Xlnl). (34) 

E 2  = $ j ( j  + 1) - [ ( I +  1 ) +  1/4](n11(1 -cos x ) / R 2  sin2xlnl)+ 1 /2R2  

Eo is just the exact eigenvalue of the ‘curved’ hydrogenic Schrodinger equation 
(Schrodinger 1940, Bessis and Bessis 1979) which, at the flat limit, reduces to the 
well known electrostatic hydrogenic energy. El is the ‘curved form’ of the classical 
Lande term and of the relativistic correction and Darwin term. E2 corresponds to 
additional ‘curvature’ contributions. This last expression has been rearranged after 
noting that ![(l-cosx)/R s inxI2= -1/4R2+$(1-cosx)/R2sin2x.  

In order to analyse the curvature effects on the fine structure theoretical spectra, 
one has to put in evidence the n and 1 dependence of the various integrals in (33) 
and (34). The expression of the second part of El in terms of n and 1 can be obtained 
without any difficulty since, after a simple trigonometric transformation, it can be 
absorbed into the curved hydrogenic electrostatic Schrodinger equation. As in the 
flat space, the Darwin term only contributes when 1 = 0 (see appendix 2). The 
expressions of the remaining matrix elements are obtainable in principle, at least by 
brute termwise integration. In fact, the direct calculation leads to rather cumber- 
some expressions and, in the present paper, we shall consider only the particular cases 
I = n - 1 and 1 = n -2. Then, the basic wavefunctions are respectively 

9i?,,n-l = N,,,,-l(sin x)“ exp(-ZRx/n), 

%,,n-2 = N n  , , -2(s in~)“[(n -1) cotx-ZR/n]exp(-ZRX/n).  
(35) 

Even in that case, the final expressions of matrix elements are lengthy and we have 
derived for them approximate expressions (see appendix 2). 

Finally, one obtains 

E =E,, +E,,lj 

where 

E,, = -Z2 /2n2+n2 /2R2 ,  

Z4a 1 3 1 E .=-- (-- -) +y [ j ( j  + 1) - 1(1+ 1) + 1 / 4 1 ~ ( n ,  I )  
“ I  2n3 1 + 1 / 2  4n 2R 

n 2 + l  n 1 
[ j ( j  + 1) - 1 ( 1 +  1) -3/4]L(n, 1 )+  (--- I + l,2) +zl a 

For 1 = n - 1 and 1 = n -2, the expressions of the K(n ,  I )  and the L(n, 1) parameters, 
in terms of the quantum number n, are given in table 1. All the curvature corrections 
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Table 1. Expressions of the fine structure parameters. 

l = n - 1  l = n - 2  

8n3-18n2+9n - 4  
4n (n - 312) 

6n2-3n +1 6n3-9n2+13n -6 
8n2(n - l ) ( n  - 1/2) 8n2(n -2)(n -3/2)(n -1) Lin, 1)  

to the energy are at least of an order of magnitude of 1/R2 and, therefore, the 
associated shifts or splittings of the energy levels of the free atom would be detectable 
only in regions of large curvature. It should be noted first that the curvature contribu- 
tions to the electronic energy E, are positive and, in order that the electron remains 
bound to the point charge nucleus, the second term of E,  must not be as large as the 
first classical term. One gets the condition (in au) R > n 2 / 2 .  The dependence of the 
fine structure energy Enlj on the quantum numbers n, I and j being known, at least 
for 1 = n - 1 and 1 = n -2, one could question about the order of magnitude of the 
radius of curvature R which allows the curvature corrections to the flat energies to 
be detectable. As a simple example, we have reported in table 2 the curvature 
contributions to the hydrogenic n = 2 fine structure energy levels comparatively with 
the classical contributions. It is found that the inclusion of the curvature contributions 
leads to a shift of the non-degenerate 2p312 fine structure level and to a splitting A, 
of the degenerate 2p1/2-2s1/2 level. To be somewhat consistent, this modification of 
the theoretical spectra is compared, in table 2, with the non-relativistic? Lamb 
shift contributions Wnlj = Z4a2X/n3( l  + 1)(21+ 1) for j = 1 + 1/2 and Wnlj = 
-Z4a2X/n31(21+ 1) for j = E  - 1/2 where X= 1.159 644 (Durand 1976). 
Obviously, the curvature induced splitting A,= 1/R2 of the 2pl/2-2s1/2 level should 
be detectable only if R is extremely small: this splitting A, would be comparable to 
the Lamb splitting for R = 2 x cm (Parker 1980). 

Table 2. Fine structure of the hydrogenic n = 2 energy levels (in au). 

Electronic Flat fine Curvature fine Non-relativistic 
energy structure structure contributions Lamb shift 

Z4a2 1 Z2a2 Z4a2X -- 
128 2R2 8R2 48 E2P3,2  

z4a2x -- z2 2 1 23Z2a2 
-_. 

E2W2 8 +z 4R2 32R2 24 
5z4a2 .- 

128 3 53z2a2  
4R2 32R2 

z4a2x 
8 

t Although a non-relativistic calculation does not account satisfactorily for the observed Lamb splitting AL 
of the 2 ~ , / , - 2 s ~ / ~  level (these formulae AL = 67.7 Mc s-I; refined relativistic calculation AL = 
1057.64(2) Mc sC1 (Erickson and Yennie 1965); observed value A L =  1057.845(9) Mc sC1 (Lundeen and 
Pipkin 1981). 
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5. Conclusion 

Finally, we have obtained, via the non-relativistic limit of the Dirac-Pauli covariant 
equations, the spin-dependent one-electron terms of the Hamiltonian. This investiga- 
tion has been performed within the framework of the simplistic model which has been 
proposed to investigate 'curvature effects' on the atomic spectra (see paper I). The 
'curved form' of the classical Land6 interaction and relativistic correction has been 
given and we have found some additional curvature induced terms which vanish at 
the classical flat limit. To our knowledge such expressions have not yet been given. 
Within a limited example we have put in evidence the curvature modifications to the 
flat fine structure energy levels: curvature induced shift on the non-degenerate levels 
and splitting of the degenerate ones. In this respect, these effects play a role analogous 
to the Lamb shift effects. Of course, these additional curvature contributions to the 
flat energies are ridiculously small when R is taken to be the universe mean radius 
of curvature (R = cm) (Steinmetz 1967). Nevertheless, as pointed out by Parker 
(1980), one can conceive the possible existence of cosmic regions of large curvature, 
for instance in the vicinity of microscopic black holes, in which curvature effects may 
be observable and then, owing to their specific dependence on the quantum numbers, 
distinguishable from the other perturbations of the energy levels. Let us recall that, 
when considering a space of constant negative curvature (open space), instead of a 
space of positive curvature (closed space), our procedure of calculation is formally 
analogous: one has to make the changes x + ix, R + iR and V(x) = -(Z/R) cot x + 

The real usefulness and the physical implications of this non-relativistic simplistic 
model cannot be decided before investigating many other remaining points, such as 
the curved form of the hyperfine structure Hamiltonian, of the bielectronic fine 
structure terms (spin-other-orbit and spin-spin interactions), etc, which are needed 
to calculate the curvature effects on the theoretical fine and hyperfine spectra of 
many-electron atoms. A more trivial point, but not so plain, is also to obtain exact 
and general analytical expressions of the fine and hyperfine structure 'curved' para- 
meters in terms of the quantum numbers. This last point is in progress and treated 
by the ladder operator techniques described in a previous paper (Bessis et a1 1981). 
The development of other aspects of the model, particularly in quantum chemistry 
(parametric curvature, see paper I), is also under investigation?. 

-(Z/R)(coth x - 1). 

Appendix 1. Derivation of the fine structure terms in a spherical three-space 

Since the Sk' spin tensor is antisymmetric and since, for the case of a spherical 
three-space, the Coulomb potential V = - (Z/R) cot x does not depend on 6 and 4, 
the third term of the Pauli equation (25) reduces to 

+ Let us mention that Horak (1982) has obtained the 1/Z expansion of the (lsj' 'S energy for Z = 0 via 
the present curved model. 
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The last parenthesis is just the scalar product 21 s when written in polar coordinates. 
Therefore one gets the 'curved' form of the Land6 spin-orbit term which has been 
given in (30). 

In the same way as in the flat space, the fourth term of equation (25), i.e. the 
Darwin term, can be conveniently written 

- ia2gki(av/aXk)a/aXi = &'(AV) - Q ~ ' [ A ,  VI. (A1.2) 

Finally, in the correct Hermitian non-relativistic limit of the Dirac equation (Baym 
1969), only the term &x2(AV) will survive in (30). For a Coulomb potential, this term 
is essentially a contact interaction between the electron and the charge of the nucleus. 
Thus its contribution to the energy is zero except for 's' states (I = 0): in that case it 
is the same as in the flat space, i.e. -a2Z4/n3.  

Since r! = 0, the first, second, fourth and sixth terms of U in equation (26) reduce 
to 

where, again, the last parenthesis is just the scalar product 21 s, 

(A1.3) 

(Al.4) 

=-- i 1  -(-(Jgg22r;)+- a a Jgg33r;) 
2 Jg ae a4 

2R3 sin2 ,y sin 8 2 2 
i R (E (1 -cos x)  cos flu+ -- (1 -cos x) - _ -  

and this term is zero, since (cos 8 U+ = (a/a4)cre) 
- $QI 2s kf(a v/ax k)r; 

= -$a '(d V / d ~ ) ( s ' ~ r ;  + sX3r;) 
i 2 Z  1 i(1-cosx) 
4 R sin2X 2 s i n ~  

= -- a -- (G1G2&6.' + G lG 3G3G I). (A1.6) 

-1 - 1  Since G2G2 = G3G3 =I and U U = I / R 2 ,  one gets the final expression given in (30). 
It can be shown by direct calculation that the fourth term of U in equation (26) 

can be alternatively written divr ;  and vanishes. The last term of U also vanishes 
since V depends only on x and r; = 0. 

Let us consider the third term of U and introduce the spin curvature tensor 

Rki = .- $S,,R mnkl (A1.7) 
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which is defined by (see, for instance, Pagels 1965) 

a a ar; arl 
R k I = - [ s + i r ; , T + i r j  1 = i  (ax ?-- sx ) +[r;,r;l. 

ax 
(A1 .8 )  

For the case of a spherical three-space, the only non-vanishing components are 

R12 = -RZ1 = -$G6 sin x, 

R 2 3  = - R 3 2  = - $6x sin x sin e. 
R13=-R31=&.e sinx sine, (A1.9)  

2 

Then, since 1’ = l 2  = lGx l 2  = I,  the third term of U in equation (26 )  reduces to 

-&SklSmnRmnkl= 3 / 4 R 2 .  (A1. lO) 

Appendix 2. Relativistic kinetic correction and fine structure integrals 

A2.1. n and 1 dependence of the relativistic correction 

One notes that 

2’ Z 2  1 2 Z E  2 

+-cotx. (E+-ccotX) = E  --+T- z 
R R 2  R sin2x R 

(A2 .1 )  

Thus, after introducing this term into the curved hydrogenic Schrodinger equation 
and separating the variables, one is led to solve the following eigenequation: 

[d2/d,y2- y ( y  + l)/sin2 x + 2 Z R ( 1  + a 2 E )  cot x +A]%’(,y) = 0 (A2 .2 )  

where 

y ( y  + 1)  = 1(1+ 1 ) - Z 2 a 2  or y = - ; + [ ( I +  1 / 2 ) 2 - Z 2 a 2 ] 1 / 2 ,  

A = 2 R 2 E + 1 + ~ 2 ( R 2 E 2 - Z 2 ) .  

As previously pointed out in I, the ladder operator method is particularly suitable for 
solving the eigenequation. Within the Infeld and Hull (195 1 )  classification, this 
equation is a type E (class I) factorisable equation with eigenvalue 

A ”  = ( U  + y  + 1 ) 2 - Z z R 2 ( 1  +a2E) ’ / ( v  + y  + 1)’ 
where v = n - 1 - 1 is a non-negative integer. Consequently 

(A2 .3 )  

(A2 .4 )  

Finally, when retaining in (A2 .4 )  the terms up to a’, one finds 

(A2 .5 )  Z’ n 2 - 1  z 4 a 2  1 z 2 a 2  n 2 - 1  2n -21-1  E=--+--- 
2n2  2 R 2  2n3 (m-$)-z(T+ 1+1/2  

A2.2. Calculation of the fine structure integrals 

Owing to the expression (32 )  of the wavefunctions, the calculation of the fine structure 
parameters in (31 ) ,  either directly or after one part integration, can be reduced to the 
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evaluation of the basic couple of integrals 

~ ( q )  = J ewPx(sin x)Z4 dx, (A2.6) 

where p = 2ZR/n and 4 is a positive integer. From tables, one gets (Gradshteyn and 
Ryzhik 1980) 

J ( q )  = J m  e-px(sin x1~4-1 dx, 
0 0 

(A2.7) 

As can be inferred from (A2.7), all the integrals will involve the factors F = 
(l*ee-P")/(l-e-P") and G = l l l = l  ( l + u , ) / ~ ~ = ~ ( l + b , ) .  In order to put in evidence 
the contributions due to the curvature, we have introduced two basic approximations. 
On one hand, since p = 2ZR/n, the first factor F, which is either 1 or coth p, is always 
made equal to 1. On the other hand, since obviously bu << 1, and owing to their 
expressions, the ratios of finite products G can be written 

G -  fi ( l+a , )  fi (1-6") 
u = l  u = l  

or 
S r 

G - l +  1 a,- 1 b u +  . . . .  
u = l  u = 1  

Owing to the above expressions of a, and b,, one gets 

4 s  l r  
p u = l  p u = l  

G - l + 7  1 u 2 + ~  1 ( 2 ~ - 1 ) ~ + O  

(A2.8) 

(A2.9) 

From tables (Gradshteyn and Ryzhik 1980) 
s (s + 1)(2s + 1) r r(4r2-1) 

u 2 =  9 1 (2v-1) = (A2.10) 3 '  u = l  6 u = l  

and finally, one obtains 

Finally, one finds respectively for 1 = n - 1 and I = n - 2 

where &I is the flat limit of the Land6 fine structure parameter, 

en, = (nW31nl) = z 3 / n  31(1 + 1/2)(1+ I), 

(A2.11) 

(A2.12) 

(A2.13) 
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( 1 / 2 R 2  
(nll 1-cosX/R2sin2X I d ) =  8n3-18n2+9n-4  (A2.14) 

n (2n - 3 )  

(nl l (1  - c o s x ) / R 3  s in3xInl)=Z/2R2n2.  (A2.15) 
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